Accelerator Physics Experiments for Future Hadron Colliders

EXPERIMENTS IN RHIC (summer 2000 ??):

Beam Growth Studies with Primary and Bent Crystal Collimators

- Introduction
- Previous Experience
- Predictions for the Intrabeam Scattering
- Bent Crystal Channeling
- Experimental Set-Up

Submitted by Dejan Trbojevic, BNL

Introduction:

- Motivation for the experiment:
 - Show that *intrabeam scattering* is a dominant effect on the beam life time and on the emittance growth in RHIC ₁₉₇ Au ⁷⁹⁺ (important also in the future LARGE Hadron colliders).
 - Experimentally find out the exact scale of the problem. Why?
 - Find the optimum mode for operation!
 - Plan a correct way for the luminosity upgradeRD projects what kind?
 - Connect the experiment with luminosity optimization and Background reduction.
 - Use the impact parameter measurements to show the way of beam growth:
 - First by using the Primary Collimator jaws
 - Second with the CRYSTAL collimation.

Previous Experience:

- Major "rules":
 - Measure a signal downstream of the collimation point without reducing the luminosity
 - Fit a response curve to the predicted beam growth (Intrabeam scattering?, Diffusion?)
- SPS measurements (LHC note 117):
 - Measurements of the transverse difusion speed and the impact parameter-b
- Difusion and 778 experiments in the Tevatron
- HERA measurements (Bruning et al.)

Intra Beam Scattering Predictions:

- INTRA-BEAM multiple Coulomb scattering has cross section:
 - $-\sigma \cong \mathbb{Z}^4/\mathbb{A}^2$
- Particles in the bunch exchange longitudinal and transverse momenta by Coulomb scattering
- D.C background, beam halo, or trapped particles in the empty buckets, could be created by the escaped particles from the RF bucket (initial bucket area of \sim 0.3 eVs/u -> \sim 1.3 eVs/u).
- COMPARISONS BETWEEN EXPERIMENTAL STUDIES with THEORY show a factor of two overestimate by theory.
- •Beam Growth at $\gamma >> \gamma_t$:
 - $1/\sigma_x d\sigma_x/dt = Z^4 N C_o/(A^2 \varepsilon_x \varepsilon_y S \gamma_t) d/n_c$
 - $\tau^{-1} \sim \mathbf{Z}^4 \, \mathbf{N} \, / (\mathbf{A}^2 \, \boldsymbol{\epsilon}_{\mathbf{x}} \boldsymbol{\epsilon}_{\mathbf{y}} \, \mathbf{S})$

Measurement of the impact parameter b:

- Measurements of the impact parameter b by using the edge of the primary collimator or:
- Using a bent Si crystal (L=5 mm) (Valery Biryukov Phys. Rev. E 52 (1995) 2045).
 One looks at the efficiency F dependence on t (thickness of the septum x'L):
 - Accuracy $\delta b = \delta x'* L = 1 \mu rad 5 mm = 5 nm!$ If we plot F(x') F(-x') as a function of t beam distribution over the impact parameter b at crystal (BPM resolution 0.1 mm).
 - $\theta = 0$, t = x'L(x'>0), t = x'L(x'<0)

Why Bent Crystal Collimation?

- The Lindhard Critical angle significantly larger (8.9 times - 79 1/2):
 - ψ_c =2[Z_1Z_2 e²/d p υ]¹/², where d is the crystal lattice parameter, p momentum, υ is the speed.
- Shorter Crystal (5 mm instead of 4 cm) improves efficiency and reduces the nuclear scattering beam loss
- Smaller bending angle (0.5 mrad) reduces angle problems (4-5 mrad previously)

